Quantum revivals and many-body localization


الملخص بالإنكليزية

We show that the magnetization of a single `qubit spin weakly coupled to an otherwise isolated disordered spin chain exhibits periodic revivals in the localized regime, and retains an imprint of its initial magnetization at infinite time. We demonstrate that the revival rate is strongly suppressed upon adding interactions after a time scale corresponding to the onset of the dephasing that distinguishes many-body localized phases from Anderson insulators. In contrast, the ergodic phase acts as a bath for the qubit, with no revivals visible on the time scales studied. The suppression of quantum revivals of local observables provides a quantitative, experimentally observable alternative to entanglement growth as a measure of the `non-ergodic but dephasing nature of many-body localized systems.

تحميل البحث