Renormalization Group Analysis of a Fermionic Hot Spot Model


الملخص بالإنكليزية

We present a renormalization group (RG) analysis of a fermionic hot spot model of interacting electrons on the square lattice. We truncate the Fermi surface excitations to linearly dispersing quasiparticles in the vicinity of eight hot spots on the Fermi surface, with each hot spot separated from another by the wavevector $(pi, pi)$. This motivated by the importance of these Fermi surface locations to the onset of antiferromagnetic order; however, we allow for all possible quartic interactions between the fermions, and also for all possible ordering instabilities. We compute the RG equations for our model, which depend on whether the hot spots are perfectly nested or not, and relate our results to earlier models. We also compute the RG flow of the relevant order parameters for both Hubbard and $J$, $V$ interactions, and present our results for the dominant instabilities in the nested and non-nested cases. In particular, we find that non-nested hot spots with $J$, $V$ interactions have competing singlet $d_{x^2-y^2}$ superconducting and $d$-form factor incommensurate density wave instabilities. We also investigate the enhancement of incommensurate density waves near experimentally observed wavevectors, and find dominant $d$-form factor enhancement for a range of couplings.

تحميل البحث