Simulations of Weak Gravitational Lensing - II : Including Finite Support Effects in Cosmic Shear Covariance Matrices


الملخص بالإنكليزية

(Abridged) We investigate and quantify the impact of finite simulation volume on weak lensing two- and four-point statistics. These {it finite support} (FS) effects are modelled for several estimators, simulation box sizes and source redshifts, and validated against a new large suite of 500 $N$-body simulations. The comparison reveals that our theoretical model is accurate to better than 5 per cent for the shear correlation function $xi_{+}(theta)$ and its error. We find that the most important quantities for FS modelling is the ratio between the measured angle $theta$ and the angular size of the simulation box at the source redshift, $theta_{box}(z_s)$, or the multipole equivalent $ell / ell_{box}(z_s)$. When this ratio reaches 0.1, independently of the source redshift, the shear correlation function $xi_+$ is suppressed by 5, 10, 20 and 25 percent for $L_{box}= 1000$, $500$, $250$ and $147mbox{Mpc}/h$ respectively. When it reaches 0.2, the suppression exceeds 25 percent even for the largest box. The same effect is observed in $xi_{-}(theta)$, but at much larger angles. This has important consequences for cosmological analyses using $N$-body simulations to calibrate the impact of non-linear gravitational clustering or to estimate errors and systematics effects, and should not be overlooked. We propose simple semi-analytic solutions to correct for these finite box effects with and without the presence of survey masks, and the method can be generalized to any weak lensing estimator. This offers a graceful solution to the important problem of estimating accurate covariance matrices for weak lensing studies: there is no need to run extra large simulation volumes, as long as the box effects are corrected.

تحميل البحث