In optical interferometry multi-mode entanglement is often assumed to be the driving force behind quantum enhanced measurements. Recent work has shown this assumption to be false: single mode quantum states perform just as well as their multi-mode entangled counterparts. We go beyond this to show that when photon losses occur - an inevitability in any realistic system - multi-mode entanglement is actually detrimental to obtaining quantum enhanced measurements. We specifically apply this idea to a superposition of coherent states, demonstrating that these states show a robustness to loss that allows them to significantly outperform their competitors in realistic systems. A practically viable measurement scheme is then presented that allows measurements close to the theoretical bound, even with loss. These results promote a new way of approaching optical quantum metrology using single-mode states that we expect to have great implications for the future.