Deconvoluting chain heterogeneities from driven translocation through a nano-pore


الملخص بالإنكليزية

We study translocation dynamics of a driven compressible semi-flexible chain consisting of alternate blocks of stiff ($S$) and flexible ($F$) segments of size $m$ and $n$ respectively for different chain length $N$ in two dimension (2D). The free parameters in the model are the bending rigidity $kappa_b$ which controls the three body interaction term, the elastic constant $k_F$ in the FENE (bond) potential between successive monomers, as well as the segmental lengths $m$ and $n$ and the repeat unit $p$ ($N=m_pn_p$) and the solvent viscosity $gamma$. We demonstrate that due to the change in entropic barrier and the inhomogeneous viscous drag on the chain backbone a variety of scenarios are possible amply manifested in the waiting time distribution of the translocating chain. These information can be deconvoluted to extract the mechanical properties of the chain at various length scales and thus can be used to nanopore based methods to probe bio-molecules, such as DNA, RNA and proteins.

تحميل البحث