Amorphous ferromagnetism and re-entrant magnetic glassiness in Sm$_{2}$Mo$_{2}$O$_{7}$: new insights into the electronic phase diagram of pyrochlore molybdates


الملخص بالإنكليزية

We discuss the magnetic properties of a Sm$_{2}$Mo$_{2}$O$_{7}$ single crystal as investigated by means of different experimental techniques. In the literature, a conventional itinerant ferromagnetic state is reported for the Mo$^{4+}$ sublattice below $sim 78$ K. However, our results of dc magnetometry, muon spin spectroscopy ($mu^{+}$SR) and high-harmonics magnetic ac susceptibility unambiguously evidence highly disordered conditions in this phase, in spite of the crystalline and chemical order. This disordered magnetic state shares several common features with amorphous ferromagnetic alloys. This scenario for Sm$_{2}$Mo$_{2}$O$_{7}$ is supported by the anomalously high values of the critical exponents, as mainly deduced by a scaling analysis of our dc magnetization data and confirmed by the other techniques. Moreover, $mu^{+}$SR detects a significant static magnetic disorder at the microscopic scale. At the same time, the critical divergence of the third-harmonic component of the ac magnetic susceptibility around $sim 78$ K leads to additional evidence towards the glassy nature of this magnetic phase. Finally, the longitudinal relaxation of $mu^{+}$ spin polarization (also supported by results of ac susceptibility) evidences re-entrant glassy features similar to amorphous ferromagnets.

تحميل البحث