First order phase transitions occur discretely from one state to another, however they often display continuous behavior. To understand this nature, it is essential to probe how the emergent phase nucleates, interacts and evolves with the initial phase across the transition at microscopic scales. Here, the prototypical first-order magneto-structural transition in FeRh is used to investigate these phenomena. We find that the temperature evolution of the final phase exhibits critical behavior. Furthermore, a difference between the structure and magnetic transition temperatures reveals a novel intermediate phase created from the interface between the initial and nucleated final states. This emergent phase, characterized by its lack of spin order due to the competition between the antiferromagnetic and ferromagnetic interactions, leads to suppression of the dynamic aspect of the transition, generating a static mixed-phase-morphology. Understanding and controlling the transition process at this spatial scale is critical to optimizing functional device capabilities.