A FETI-DP preconditioner of discontinuous Galerkin method for multiscale problems in high constrast media


الملخص بالإنكليزية

In this paper we consider second order elliptic partial differential equations with highly varying (heterogeneous) coefficients on a two-dimensional region. The problems are discretized by a composite finite element (FE) and discontinuous Galerkin (DG) Method. The fine grids are in general nonmatching across the subdomain boundaries, and the subdomain partitioning does not need to resolve the jumps in the coefficient. A FETI-DP preconditioner is proposed and analyzed to solve the resulting linear system. Numerical results are presented to support our theory.

تحميل البحث