Extensive first-principle calculations on embedded clusters containing few O, Y, Ti, and Cr atoms as well as vacancies are performed to obtain interaction parameters to be applied in Metropolis Monte Carlo simulations, within the framework of a rigid lattice model. A novel description using both pair and triple parameters is shown to be more precise than the commonly used pair parameterization. Simulated annealing provides comprehensive data on the energetics, structure and stoichiometry of nm-size clusters at T=0. The results are fully consistent with the experimental finding of negligible coarsening and a high dispersion of the clusters, with the observation that the presence of Ti reduces the cluster size, and with the reported radiation tolerance of the clusters. In alloys without vacancies clusters show a planar structure, whereas the presence of vacancies leads to three-dimensional configurations. Additionally, Metropolis Monte Carlo simulations are carried out at high temperature in order to investigate the dependence of nanocluster composition on temperature. A good agreement between the existing experimental data on the ratios (Y+Ti):O, Y:Ti, (Y+Cr):O, and Y:Cr, and the simulation results is found. In some cases it is even possible to draw the conclusion that the respective alloys contained a certain amount of vacancies, and that the clusters analyzed were frozen-in high-temperature configurations. The comparison of experimental data with those obtained by simulations demonstrates that the assumption of nanoclusters consisting of nonstoichiometric oxides which are essentially coherent with the bcc lattice of the Fe-Cr matrix leads to reasonable results.