Dicke-type phase transition in a spin-orbit coupled Bose-Einstein condensate


الملخص بالإنكليزية

Spin-orbit coupled Bose-Einstein condensates (BECs) provide a powerful tool to investigate interesting gauge-field related phenomena. We study the ground state properties of such a system and show that it can be mapped to the well-known Dicke model in quantum optics, which describes the interactions between an ensemble of atoms and an optical field. A central prediction of the Dicke model is a quantum phase transition between a superradiant phase and a normal phase. Here we detect this transition in a spin-orbit coupled BEC by measuring various physical quantities across the phase transition. These quantities include the spin polarization, the relative occupation of the nearly degenerate single particle states, the quantity analogous to the photon field occupation, and the period of a collective oscillation (quadrupole mode). The applicability of the Dicke model to spin-orbit coupled BECs may lead to interesting applications in quantum optics and quantum information science.

تحميل البحث