Propagation of Superluminal PeV IceCube Neutrinos: A High Energy Spectral Cutoff or New Constraints on Lorentz Invariance Violation


الملخص بالإنكليزية

The IceCube observation of cosmic neutrinos with $E_{ u} > 60$ TeV, most of which are likely of extragalactic origin, allows one to severely constrain Lorentz invariance violation (LIV) in the neutrino sector, allowing for the possible existence of superluminal neutrinos. The subsequent neutrino energy loss by vacuum $e^+e^-$ pair emission (VPE) is strongly dependent on the strength of LIV. In this paper we explore the physics and cosmology of superluminal neutrino propagation. We consider a conservative scenario for the redshift distribution of neutrino sources. Then by propagating a generic neutrino spectrum, using Monte Carlo techniques to take account of energy losses from both VPE and redshifting, we obtain the best present constraints on LIV parameters involving neutrinos. We find that $delta_{ u e} = delta_{ u} - delta_e le 5.2 times 10^{-21}$. Taking $delta_e le 5 times 10^{-21}$, we then obtain an upper limit on the superluminal velocity fraction for neutrinos alone of $1.0 times 10^{-20}$. Interestingly, by taking $delta_{ u e} = 5.2 times 10^{-21}$, we obtain a cutoff in the predicted neutrino spectrum above 2 PeV that is consistent with the lack of observed neutrinos at those energies, and particularly at the Glashow resonance energy of 6.3 PeV. Thus, such a cutoff could be the result of neutrinos being slightly superluminal, with $delta_{ u}$ being $(0.5 {rm to} 1.0) times 10^{-20}$.

تحميل البحث