A group $Gamma$ is said to be periodic if for any $g$ in $Gamma$ there is a positive integer $n$ with $g^n=id$. We first prove that a finitely generated periodic group acting on the 2-sphere $SS^2$ by $C^1$-diffeomorphisms with a finite orbit, is finite and conjugate to a subgroup of $mathrm{O}(3,R)$ and we use it for proving that a finitely generated periodic group of spherical diffeomorphisms with even bounded orders is finite. Finally, we show that a finitely generated periodic group of homeomorphisms of any orientable compact surface other than the 2-sphere or the 2-torus (which is the purpose of a previous paper of the authors) is finite.