Dynamical crystallization in a low-dimensional Rydberg gas


الملخص بالإنكليزية

Dominating finite-range interactions in many-body systems can lead to intriguing self-ordered phases of matter. Well known examples are crystalline solids or Coulomb crystals in ion traps. In those systems, crystallization proceeds via a classical transition, driven by thermal fluctuations. In contrast, ensembles of ultracold atoms laser-excited to Rydberg states provide a well-controlled quantum system, in which a crystalline phase transition governed by quantum fluctuations can be explored. Here we report on the experimental preparation of the crystalline states in such a Rydberg many-body system. Fast coherent control on the many-body level is achieved via numerically optimized laser excitation pulses. We observe an excitation-number staircase as a function of the system size and show directly the emergence of incompressible ordered states on its steps. Our results demonstrate the applicability of quantum optical control techniques in strongly interacting systems, paving the way towards the investigation of novel quantum phases in long-range interacting quantum systems, as well as for detailed studies of their coherence and correlation properties.

تحميل البحث