We show that nonlinear interactions induce both the Zeno and anti-Zeno effects in the generalised Bose-Josephson model (with the on-site interactions and the second-order tunneling) describing Bose-Einstein condensate in double-well trap subject to particle removal from one of the wells. We find that the on-site interactions induce textit{only} the Zeno effect, which appears at long evolution times, whereas the second-order tunneling leads to a strong decay of the atomic population at short evolution times, reminiscent of the anti-Zeno effect, and destroys the nonlinear Zeno effect due to the on-site interactions at long times.