An exact master equation for the system-reservoir dynamics under the strong coupling regime and non-Markovian dynamics


الملخص بالإنكليزية

In this paper we present a method to derive an exact master equation for a bosonic system coupled to a set of other bosonic systems, which plays the role of the reservoir, under the strong coupling regime, i.e., without resorting to either the rotating-wave or secular approximations. Working with phase-space distribution functions, we verify that the dynamics are separated in the evolution of its center, which follows classical mechanics, and its shape, which becomes distorted. This is the generalization of a result by Glauber, who stated that coherent states remain coherent under certain circumstances, specifically when the rotating-wave approximation and a zero-temperature reservoir are used. We show that the counter-rotating terms generate fluctuations that distort the vacuum state, much the same as thermal fluctuations.Finally, we discuss conditions for non-Markovian dynamics.

تحميل البحث