We measured the temperature dependence of the saturation magnetization (Ms) of a (La1-xPrx)1-yCayMnO3 (x ~ 0.60, y ~ 0.33) film as a function of applied bending stress. Stress producing a compressive strain of -0.01% along the magnetic easy axis increased the Curie temperature by ~6 K and the metal-insulator-transition by ~4 K. Regardless of whether or not stress is applied to the film, magnetic ordering occurs at temperatures significantly higher than the metal-insulator-transition temperature. The magnetization of the sample at the temperature of the metal-insulator-transition is approximately the site percolation threshold for a two-dimensional spin lattice.