Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid


الملخص بالإنكليزية

We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector beta, which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the beta frame and Landau frame and present an instance where they differ.

تحميل البحث