In this paper, we consider the problem of model order reduction of stochastic biochemical networks. In particular, we reduce the order of (the number of equations in) the Linear Noise Approximation of the Chemical Master Equation, which is often used to describe biochemical networks. In contrast to other biochemical network reduction methods, the presented one is projection-based. Projection-based methods are powerful tools, but the cost of their use is the loss of physical interpretation of the nodes in the network. In order alleviate this drawback, we employ structured projectors, which means that some nodes in the network will keep their physical interpretation. For many models in engineering, finding structured projectors is not always feasible; however, in the context of biochemical networks it is much more likely as the networks are often (almost) monotonic. To summarise, the method can serve as a trade-off between approximation quality and physical interpretation, which is illustrated on numerical examples.