Efficient Bayesian inference for long memory processes


الملخص بالإنكليزية

In forecasting problems it is important to know whether or not recent events represent a regime change (low long-term predictive potential), or rather a local manifestation of longer term effects (potentially higher predictive potential). Mathematically, a key question is about whether the underlying stochastic process exhibits memory, and if so whether the memory is long in a precise sense. Being able to detect or rule out such effects can have a profound impact on speculative investment (e.g., in financial markets) and inform public policy (e.g., characterising the size and timescales of the earth systems response to the anthropogenic CO2 perturbation). Most previous work on inference of long memory effects is frequentist in nature. Here we provide a systematic treatment of Bayesian inference for long memory processes via the Autoregressive Fractional Integrated Moving Average (ARFIMA) model. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g., short memory effects) can be integrated over in order to focus on long memory parameters and hypothesis testing more directly than ever before. We illustrate our new methodology on both synthetic and observational data, with favorable comparison to the standard estimators.

تحميل البحث