High-fidelity preparation, gates, memory and readout of a trapped-ion quantum bit


الملخص بالإنكليزية

We implement all single-qubit operations with fidelities significantly above the minimum threshold required for fault-tolerant quantum computing, using a trapped-ion qubit stored in hyperfine atomic clock states of $^{43}$Ca$^+$. We measure a combined qubit state preparation and single-shot readout fidelity of 99.93%, a memory coherence time of $T^*_2=50$ seconds, and an average single-qubit gate fidelity of 99.9999%. These results are achieved in a room-temperature microfabricated surface trap, without the use of magnetic field shielding or dynamic decoupling techniques to overcome technical noise.

تحميل البحث