We present a tree-tensor-network-state (TTNS) method study of the ionic-neutral curve crossing of LiF. For this ansatz, the long-range correlation deviates from the mean-field value polynomially with distance, thus for quantum chemical applications the computational cost could be significantly smaller than that of previous attempts using the density matrix renormalization group (DMRG) method. Optimization of the tensor network topology and localization of the avoided crossing are discussed in terms of entanglement.