An X-Ray Line from eXciting Dark Matter


الملخص بالإنكليزية

The eXciting Dark Matter (XDM) model was proposed as a mechanism to efficiently convert the kinetic energy (in sufficiently hot environments) of dark matter into e+e- pairs. The standard scenario invokes a doublet of nearly degenerate DM states, and a dark force to mediate a large upscattering cross section between the two. For heavy ($sim TeV$) DM, the kinetic energy of WIMPs in large (galaxy-sized or larger) halos is capable of producing low-energy positrons. For lighter dark matter, this is kinematically impossible, and the unique observable signature becomes an X-ray line, arising from $chi chi rightarrow chi^* chi^*$, followed by $chi^* rightarrow chi gamma$. This variant of XDM is distinctive from other DM X-ray scenarios in that it tends to be most present in more massive, hotter environments, such as clusters, rather than nearby dwarfs, and has different dependencies from decaying models. We find that it is capable of explaining the recently reported X-ray line at 3.56 keV. For very long lifetimes of the excited state, primordial decays can explain the signal without the presence of upscattering. Thermal models freeze-out as in the normal XDM setup, via annihilations to the light boson $phi$. For suitable masses the annihilation $chi chi rightarrow phi phi$ followed by $phi rightarrow SM$ can explain the reported gamma-ray signature from the galactic center. Direct detection is discussed, including the possibility of explaining DAMA via the Luminous dark matter approach. Quite generally, the proximity of the 3.56 keV line to the energy scale of DAMA motivates a reexamination of electromagnetic explanations. Other signals, including lepton jets and the modification of cores of dwarf galaxies are also considered.

تحميل البحث