Active biopolymer networks generate scale-free but euclidean clusters


الملخص بالإنكليزية

We report analytical and numerical modelling of active elastic networks, motivated by experiments on crosslinked actin networks contracted by myosin motors. Within a broad range of parameters, the motor-driven collapse of active elastic networks leads to a critical state. We show that this state is qualitatively different from that of the random percolation model. Intriguingly, it possesses both euclidean and scale-free structure with Fisher exponent smaller than $2$. Remarkably, an indistinguishable Fisher exponent and the same euclidean structure is obtained at the critical point of the random percolation model after absorbing all enclaves into their surrounding clusters. We propose that in the experiment the enclaves are absorbed due to steric interactions of network elements. We model the network collapse, taking into account the steric interactions. The model shows how the system robustly drives itself towards the critical point of the random percolation model with absorbed enclaves, in agreement with the experiment.

تحميل البحث