A family of energy stable, skew-symmetric finite difference schemes on collocated grids


الملخص بالإنكليزية

A simple scheme for incompressible, constant density flows is presented, which avoids odd-even decoupling for the Laplacian on a collocated grids. Energy stability is implied by maintaining strict energy conservation. Momentum is conserved. Arbitrary order in space and time can easily be obtained. The conservation properties hold on transformed grids.

تحميل البحث