With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few 1.E-5 sollar mass to 3.3E-4 sollar mass, and assuming a mass accretion rate of 1.E-8 to 1.E-7 Sollar mass/yr for 44yrs, it has been concluded that the white dwaf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope (HST) COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8kpc; Sokoloski et al. 2013, larger than the previous 3.5kpc estimate), our derived reddening of E(B-V)=0.35 (based on combined IUE and GALEX spectra) and NLTE disk modeling (compared to black body and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 < E(B-V) < 0.50) and white dwaf mass (0.70 to 1.35 Sollar mass) the accreted mass is larger than the ejected mass. Only for a low reddening (0.25 and smaller) combined with a large white dwaf mass (0.9 sollar mass and larger) is the ejected mass larger than the accreted one. However, the best spectral fitting results are obtained for a larger value of the reddening.