The Na-O anticorrelation in horizontal branch stars. IV. M22


الملخص بالإنكليزية

We obtained high-resolution spectra for 94 candidate stars belonging to the HB of M22 with FLAMES. The HB stars we observed span a restricted temperature range (7,800<Teff<11,000 K), where about 60% of the HB stars of M22 are. Within our sample, we can distinguish three groups of stars segregated (though contiguous) in colours: Group 1 (49 stars) is metal-poor, N-normal, Na-poor and O-rich with abundances that match those determined for the primordial group of RGB stars from previous studies. Group 2 (23 stars) is still metal-poor, but it is N- and Na-rich, though only very mildly depleted in O. We can identify this intermediate group as the progeny of the metal-poor RGB stars that occupy an intermediate location along the Na-O anti-correlation. The third group (20 stars) is metal-rich, Na-rich, and O-rich and likely corresponds to the most O-rich component of the previously found metal-rich RGB population. We did not observe any severely O-depleted stars and we think that the progeny of these stars falls on the hotter part of the HB. The metal-rich population is also over-abundant in Sr, in agreement with results for corresponding RGB and SGB stars. However, we do not find any significant variation in the ratio between the sum of N and O abundances to Fe. There is some evidence of an enhancement of He content for Groups 2 and 3 stars (Y=0.338pm 0.014pm 0.05). Our results agree with the proposition that chemical composition drives the location of stars along the HB of a GC. Furthermore, we found a number of fast rotators. They are concentrated in a restricted temperature range along the HB of M22.

تحميل البحث