Bounds on determinants of perturbed diagonal matrices


الملخص بالإنكليزية

We give upper and lower bounds on the determinant of a perturbation of the identity matrix or, more generally, a perturbation of a nonsingular diagonal matrix. The matrices considered are, in general, diagonally dominant. The lower bounds are best possible, and in several cases they are stronger than well-known bounds due to Ostrowski and other authors. If $A = I-E$ is an $n times n$ matrix and the elements of $E$ are bounded in absolute value by $varepsilon le 1/n$, then a lower bound of Ostrowski (1938) is $det(A) ge 1-nvarepsilon$. We show that if, in addition, the diagonal elements of $E$ are zero, then a best-possible lower bound is [det(A) ge (1-(n-1)varepsilon),(1+varepsilon)^{n-1}.] Corresponding upper bounds are respectively [det(A) le (1 + 2varepsilon + nvarepsilon^2)^{n/2}] and [det(A) le (1 + (n-1)varepsilon^2)^{n/2}.] The first upper bound is stronger than Ostrowskis bound (for $varepsilon < 1/n$) $det(A) le (1 - nvarepsilon)^{-1}$. The second upper bound generalises Hadamards inequality, which is the case $varepsilon = 1$. A necessary and sufficient condition for our upper bounds to be best possible for matrices of order $n$ and all positive $varepsilon$ is the existence of a skew-Hadamard matrix of order $n$.

تحميل البحث