A Banach space operator $Tin B(X)$ is left polaroid if for each $lambdainhbox{iso}sigma_a(T)$ there is an integer $d(lambda)$ such that asc $(T-lambda)=d(lambda)<infty$ and $(T-lambda)^{d(lambda)+1}X$ is closed; $T$ is finitely left polaroid if asc $(T-lambda)<infty$, $(T-lambda)X$ is closed and $dim(T-lambda)^{-1}(0)<infty$ at each $lambdainhbox{iso }sigma_a(T)$. The left polaroid property transfers from $A$ and $B$ to their tensor product $Aotimes B$, hence also from $A$ and $B^*$ to the left-right multiplication operator $tau_{AB}$, for Hilbert space operators; an additional condition is required for Banach space operators. The finitely left polaroid property transfers from $A$ and $B$ to their tensor product $Aotimes B$ if and only if $0 otinhbox{iso}sigma_a(Aotimes B)$; a similar result holds for $tau_{AB}$ for finitely left polaroid $A$ and $B^*$.