Ultraviolet and visible range plasmonics of a topological insulator


الملخص بالإنكليزية

The development of metamaterials, data processing circuits and sensors for the visible and UV parts of the spectrum is hampered by the lack of low-loss media supporting plasmonic excitations and drives the intense search for plasmonic materials beyond noble metals. By studying plasmonic nanostructures fabricated on the surface of topological insulator $mbox{Bi}_{1.5}mbox{Sb}_{0.5}mbox{Te}_{1.8}mbox{Se}_{1.2}$ we found that it is orders of magnitude better plasmonic material than gold and silver in the blue-UV range. Metamaterial fabricated from $mbox{Bi}_{1.5}mbox{Sb}_{0.5}mbox{Te}_{1.8}mbox{Se}_{1.2}$ show plasmonic resonances from 350 nm to 550 nm while surface gratings exhibit cathodoluminescent peaks from 230 nm to 1050 nm. The negative permittivity underpinning plasmonic response is attributed to the combination of bulk interband transitions and surface contribution of the topologically protected states. The importance of our result is in the identification of new mechanisms of negative permittivity in semiconductors where visible-range plasmonics can be directly integrated with electronics.

تحميل البحث