Broadband dielectric spectroscopy from Hz up to the infrared (IR) range and temperature interval 10-300 K was carried out for xBaZrO3-(1-x)BaTiO3 (BZT-x, x = 0.6, 0.7, 0.8) solid solution ceramics and compared with similar studies for x = 0, 0.2, 0.4, 1 ceramics published recently (Phys. Rev. B 86, 014106 (2012)). Rather complex IR spectra without appreciable mode softening are ascribed to Last-Slater transverse optic (TO) phonon eigenvector mixing and possible two-mode mixed crystal behavior. Fitting of the complete spectral range requires a relaxation in the 100 GHz range for all the samples. Below 1 GHz another relaxation appears, which is thermally activated and obeys the same Arrhenius behavior for all the relaxor BZT samples. The frequently reported Vogel-Fulcher behavior in BZT relaxors is shown to be an artifact of the evaluation from the permittivity or loss vs. temperature dependences instead of its evaluation from loss vs. frequency maxima. The relaxation is assigned to local hopping of the off-centered Ti4+ ions in the frozen BTO clusters, whose size is rather small and cannot grow on cooling. Therefore BZT is to be considered as a dipolar glass rather than relaxor ferroelectric.