The oscillation properties of a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer are studied based on an analysis of the energy balance between spin torque and damping. The critical value of an external magnetic field applied normal to the film plane is found, below which the controllable range of the oscillation frequency by the current is suppressed. The value of the critical field depends on the magnetic anisotropy, the saturation magnetization, and the spin torque parameter.