Lower bounds for the truncated Hilbert transform


الملخص بالإنكليزية

Given two intervals $I, J subset mathbb{R}$, we ask whether it is possible to reconstruct a real-valued function $f in L^2(I)$ from knowing its Hilbert transform $Hf$ on $J$. When neither interval is fully contained in the other, this problem has a unique answer (the nullspace is trivial) but is severely ill-posed. We isolate the difficulty and show that by restricting $f$ to functions with controlled total variation, reconstruction becomes stable. In particular, for functions $f in H^1(I)$, we show that $$ |Hf|_{L^2(J)} geq c_1 exp{left(-c_2 frac{|f_x|_{L^2(I)}}{|f|_{L^2(I)}}right)} | f |_{L^2(I)} ,$$ for some constants $c_1, c_2 > 0$ depending only on $I, J$. This inequality is sharp, but we conjecture that $|f_x|_{L^2(I)}$ can be replaced by $|f_x|_{L^1(I)}$.

تحميل البحث