A parallel repetition theorem for entangled two-player one-round games under product distributions


الملخص بالإنكليزية

We show a parallel repetition theorem for the entangled value $omega^*(G)$ of any two-player one-round game $G$ where the questions $(x,y) in mathcal{X}timesmathcal{Y}$ to Alice and Bob are drawn from a product distribution on $mathcal{X}timesmathcal{Y}$. We show that for the $k$-fold product $G^k$ of the game $G$ (which represents the game $G$ played in parallel $k$ times independently), $ omega^*(G^k) =left(1-(1-omega^*(G))^3right)^{Omegaleft(frac{k}{log(|mathcal{A}| cdot |mathcal{B}|)}right)} $, where $mathcal{A}$ and $mathcal{B}$ represent the sets from which the answers of Alice and Bob are drawn.

تحميل البحث