We consider a discriminative learning (regression) problem, whereby the regression function is a convex combination of k linear classifiers. Existing approaches are based on the EM algorithm, or similar techniques, without provable guarantees. We develop a simple method based on spectral techniques and a `mirroring trick, that discovers the subspace spanned by the classifiers parameter vectors. Under a probabilistic assumption on the feature vector distribution, we prove that this approach has nearly optimal statistical efficiency.