The use of the spin Hall effect and its inverse to electrically detect and manipulate dynamic spin currents generated via ferromagnetic resonance (FMR) driven spin pumping has enabled the investigation of these dynamically injected currents across a wide variety of ferromagnetic materials. However, while this approach has proven to be an invaluable diagnostic for exploring the spin pumping process it requires strong spin-orbit coupling, thus substantially limiting the materials basis available for the detector/channel material (primarily Pt, W and Ta). Here, we report FMR driven spin pumping into a weak spin-orbit channel through the measurement of a spin accumulation voltage in a Si-based metal-oxide-semiconductor (MOS) heterostructure. This alternate experimental approach enables the investigation of dynamic spin pumping in a broad class of materials with weak spin-orbit coupling and long spin lifetime while providing additional information regarding the phase evolution of the injected spin ensemble via Hanle-based measurements of the effective spin lifetime.