Discussion on climate oscillations: CMIP5 general circulation models versus a semi empirical harmonic model based on astronomical cycles


الملخص بالإنكليزية

Power spectra of global surface temperature (GST) records reveal major periodicities at about 9.1, 10-11, 19-22 and 59-62 years. The Coupled Model Intercomparison Project 5 (CMIP5) general circulation models (GCMs), to be used in the IPCC (2013), are analyzed and found not able to reconstruct this variability. From 2000 to 2013.5 a GST plateau is observed while the GCMs predicted a warming rate of about 2 K/century. In contrast, the hypothesis that the climate is regulated by specific natural oscillations more accurately fits the GST records at multiple time scales. The climate sensitivity to CO2 doubling should be reduced by half, e.g. from the IPCC-2007 2.0-4.5 K range to 1.0-2.3 K with 1.5 C median. Also modern paleoclimatic temperature reconstructions yield the same conclusion. The observed natural oscillations could be driven by astronomical forcings. Herein I propose a semi empirical climate model made of six specific astronomical oscillations as constructors of the natural climate variability spanning from the decadal to the millennial scales plus a 50% attenuated radiative warming component deduced from the GCM mean simulation as a measure of the anthropogenic and volcano contributions to climatic changes. The semi empirical model reconstructs the 1850-2013 GST patterns significantly better than any CMIP5 GCM simulation. The model projects a possible 2000-2100 average warming ranging from about 0.3 C to 1.8 C that is significantly below the original CMIP5 GCM ensemble mean range (1 K to 4 K).

تحميل البحث