The introduction and persistence of novel sexually antagonistic alleles can depend upon factors that differ between males and females. Understanding the conditions for invasion in a two-locus model can elucidate these processes. For instance, selection can act differently upon the sexes, or sex-linkage can facilitate the invasion of genetic variation with opposing fitness effects between the sexes. Two factors that deserve further attention are recombination rates and allele frequencies -- both of which can vary substantially between the sexes. We find that sex-specific recombination rates in a two-locus diploid model can affect the invasion outcome of sexually antagonistic alleles and that the sex-averaged recombination rate is not necessarily sufficient to predict invasion. We confirm that the range of permissible recombination rates is smaller in the sex benefitting from invasion and larger in the sex harmed by invasion. However, within the invasion space, male recombination rate can be greater than, equal to, or less than female recombination rate in order for a male-benefit, female-detriment allele to invade (and similarly for a female-benefit, male-detriment allele). We further show that a novel, sexually antagonistic allele that is also associated with a lowered recombination rate can invade more easily when present in the double heterozygote genotype. Finally, we find that sexual dimorphism in resident allele frequencies can impact the invasion of new sexually antagonistic alleles at a second locus. Our results suggest that accounting for sex-specific recombination rates and allele frequencies can determine the difference between invasion and non-invasion of novel sexually antagonistic alleles in a two-locus model.