A coherently oscillating real scalar field with potential shallower than quadratic one fragments into spherical objects called I-balls. We study the I-ball formation for logarithmic potential which appears in many cosmological models. We perform lattice simulations and find that the I-balls are formed when the potential becomes dominated by the quadratic term. Furthermore, we estimate the I-ball profile assuming that the adiabatic invariant is conserved during formation and obtain the result that agrees to the numerical simulations.