Tritium and helium analyses in thin films by enhanced proton backscattering


الملخص بالإنكليزية

In order to perform quantitative tritium and helium analysis in thin film sample by using enhanced proton backscattering (EPBS), EPBS spectra for several samples consisting of non-RBS light elements (i.e., T, 4He, 12C, 16O, natSi), medium and heavy elements have been measured and analyzed by using analytical SIMNRA and Monte Carlo-based CORTEO codes. The CORTEO code used in this paper is modified and some non-RBS cross sections of proton scattering from T, 4He, 12C, 14N, 16O and natSi elements taken from ENDF/B-VII.1 database and the calculations of SigmaCalc code are incorporated. All cross section data needed in CORTEO code over the entire proton incident energy-scattering angle plane are obtained by interpolation. It is quantitatively observed that the multiple and plural scattering effects have little impact on energy spectra for light elements like T, He, C, O and Si, and the RBS cross sections of light elements, instead of the non-RBS cross sections, can be used in SIMNRA code for dual scattering calculations for EPBS analysis. It is also observed that at the low energy part of energy spectrum the results given by CORTEO code are higher than the results of SIMNRA code and are in better agreement with the experimental data, especially when heavier elements exist in samples. For tritium analysis, the tritium depth distributions should not be simply adjusted to fit the experimental spectra when the multiple and plural scattering contributions are not completely accounted, or else inaccurate results may be obtained. For medium and heavy matrix elements, when full Monte Carlo RBS calculations are used in CORTEO code, the results from CORTEO code are in good agreement with the experimental results at the low energy part of energy spectra, at this moment quantitative tritium and helium analysis in thin film sample by using enhanced proton backscattering can be performed reliably.

تحميل البحث