Global multidimensional shock waves for 2-D and 3-D unsteady potential flow equations


الملخص بالإنكليزية

Although local existence of multidimensional shock waves has been established in some fundamental references, there are few results on the global existence of those waves except the ones for the unsteady potential flow equations in n-dimensional spaces (n > 4) or in special unbounded space-time domains with non-physical boundary conditions. In this paper, we are concerned with both the local and global multidimensional conic shock wave problem for the unsteady potential flow equations when a pointed piston (i.e., the piston degenerates into a single point at the initial time) or an explosive wave expands fast in 2-D or 3-D static polytropic gas. It is shown that a multidimensional shock wave solution of such a class of quasilinear hyperbolic problems not only exists locally, but it also exists globally in the whole space-time and approaches a self-similar solution as t goes to infinity.

تحميل البحث