Long Range Ballistic Motion and Coherent Flow of Long Lifetime Polaritons


الملخص بالإنكليزية

Exciton-polaritons can be created in semiconductor microcavities. These quasiparticles act as weakly interacting bosons with very light mass, of the order of $10^{-4}$ times the vacuum electron mass. Many experiments have shown effects which can be viewed as due to a Bose-Einstein condensate, or quasicondensate, of these particles. The lifetime of the particles in most of those experiments has been of the order of a few picoseconds, leading to significant nonequilibrium effects. By increasing the cavity quality, we have made new samples with longer polariton lifetimes. With a photon lifetime on the order of 100-200 ps, polaritons in these new structures can not only come closer to reaching true thermal equilibrium, a desired feature for many researchers working in this field, but they can also travel much longer distances. We observe the polaritons to ballistically travel on the order of one millimeter, and at higher densities we see transport of a coherent condensate, or quasicondensate, over comparable distances. In this paper we report a quantitative analysis of the flow of the polaritons both in a low-density, classical regime, and in the coherent regime at higher density. Our analysis gives us a measure of the intrinsic lifetime for photon decay from the microcavity and a measure of the strength of interactions of the polaritons.

تحميل البحث