Quantum Monte Carlo study of the dynamic structure factor in the gas and crystal phase of hard-sphere bosons


الملخص بالإنكليزية

We investigate the dynamic structure factor of a system of Bose particles at zero temperature using quantum Monte Carlo methods. Interactions are modeled using a hard-sphere potential of size $a$ and simulations are performed for values of the gas parameter $na^3$ ranging from the dilute regime up to densities $n$ where the thermodynamically stable phase is a solid. With increasing density we observe a crossover of the dispersion of elementary excitations from a Bogoliubov-like spectrum to a phonon--maxon--roton curve and the emergence of a broad multiphonon contribution accompanying the single-quasiparticle peak. In particular, for $na^3=0.2138$, which corresponds to superfluid $^4$He at equilibrium density, the extracted spectrum turns out to be in good agreement with the experimental energy--momentum dispersion relation in the roton region and for higher momenta. The behavior of the spectral function at the same density in the stable solid and metastable gas phase above the freezing point is also discussed.

تحميل البحث