A number of recent challenges to the standard Lambda-CDM paradigm relate to discrepancies that arise in comparing the abundance and kinematics of local dwarf galaxies with the predictions of numerical simulations. Such arguments rely heavily on the assumption that the local dwarf and satellite galaxies form a representative distribution in terms of their stellar-to-halo mass ratios. To address this question, we present new, deep spectroscopy using DEIMOS on Keck for 82 low mass (10^7-10^9 solar masses) star-forming galaxies at intermediate redshift (z=0.2-1). For 50 percent of these we are able to determine resolved rotation curves using nebular emission lines and thereby construct the stellar mass Tully-Fisher relation to masses as low as 10^7 solar masses. Using scaling relations determined from weak lensing data, we convert this to a stellar-to-halo mass (SHM) relation for comparison with abundance matching predictions. We find a discrepancy between the propagated predictions from simulations compared to our observations, and suggest possible reasons for this as well as future tests that will be more effective.