The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices


الملخص بالإنكليزية

We introduce a new class of abstract structures, which we call generalized ultrametric semilattices, and in which the meet operation of the semilattice coexists with a generalized distance function in a tightly coordinated way. We prove a constructive fixed-point theorem for strictly contracting functions on directed-complete generalized ultrametric semilattices, and introduce a corresponding induction principle. We cite examples of application in the semantics of logic programming and timed computation, where, until now, the only tool available has been the non-constructive fixed-point theorem of Priess-Crampe and Ribenboim for strictly contracting functions on spherically complete generalized ultrametric semilattices.

تحميل البحث