The precise determination of mass through the oscillations of a very high-Q superconductor oscillating system


الملخص بالإنكليزية

The present paper is based upon the fact that if an object is part of a highly stable oscillating system, it is possible to obtain an extremely precise measure for its mass in terms of the energy trapped in this resonance. The subject is timely since there is great interest in Metrology on the establishment of a new electronic standard for the kilogram. Our contribution to such effort includes both the proposal of an alternative definition for mass in terms of energy, as well as the description of a realistic experimental system in which this definition might actually be applied. The setup consists of an oscillating type-II superconducting loop (the SEO system) subjected to the gravity and magnetic fields. The system is shown to be able to reach a dynamic equilibrium by trapping energy up to the point it levitates against the surrounding magnetic and gravitational fields, behaving as an extremely high-Q spring-load system. The proposed energy-mass equation applied to the electromechanical oscillating system eventually produces a new experimental relation between mass and standardized constants.

تحميل البحث