The authors of this paper deal with the existence and regularities of weak solutions to the homogenous $hbox{Dirichlet}$ boundary value problem for the equation $-hbox{div}(| abla u|^{p-2} abla u)+|u|^{p-2}u=frac{f(x)}{u^{alpha}}$. The authors apply the method of regularization and $hbox{Leray-Schauder}$ fixed point theorem as well as a necessary compactness argument to prove the existence of solutions and then obtain some maximum norm estimates by constructing three suitable iterative sequences. Furthermore, we find that the critical exponent of $m$ in $|f|_{L^{m}(Omega)}$. That is, when $m$ lies in different intervals, the solutions of the problem mentioned belongs to different $hbox{Sobolev}$ spaces. Besides, we prove that the solution of this problem is not in $W^{1,p}_{0}(Omega)$ when $alpha>2$, while the solution of this problem is in $W^{1,p}_{0}(Omega)$ when $1<alpha<2$.