The planetary nebula population in the halo of M87


الملخص بالإنكليزية

We investigate the diffuse light in the outer regions of the nearby elliptical galaxy M87 in the Virgo cluster, using planetary nebulas (PNs) as tracers. The surveyed areas (0.43 squared degrees) cover M87 up to a radial distance of 150 kpc, in the ransition region between galaxy halo and intracluster light (ICL). All PNs are identified through the on-off band technique using automatic selection criteria based on the distribution of the detected sources in the colour-magnitude diagram and the properties of their point-spread function. We extract a catalogue of 688 objects down to m_5007=28.4, with an estimated residual contamination from foreground stars and background Lyalpha galaxies, which amounts to ~35% of the sample. This is one of the largest extragalactic PN samples in number of candidates, magnitude depth, and radial extent, which allows us to carry out an unprecedented photometric study of the PN population in the outer regions of M87. We find that the logarithmic density profile of the PN distribution is shallower than the surface brightness profile at large radii. This behaviour is consistent with the superposition of two components associated with the halo of M87 and with the ICL, which have different luminosity specific PN numbers, the ICL contributing three times more PNs per unit light. Because of the depth of this survey we are also able to study the shape of the PN luminosity function (PNLF) in the outer regions of M87. We find a slope for the PNLF that is steeper at fainter magnitudes than the standard analytical PNLF formula and adopt a generalised model that treats the slope as a free parameter. Comparing the PNLF of M87 and the M31 bulge, both normalised by the sampled luminosity, the M87 PNLF contains fewer bright PNs and has a steeper slope towards fainter magnitudes.

تحميل البحث