We demonstrate the direct formation of vibronic ground state RbCs molecules by photoassociation of ultracold atoms followed by radiative stabilization. The photoassociation proceeds through deeply-bound levels of the (2)^{3}Pi_{0^{+}} state. From analysis of the relevant free-to-bound and bound-to-bound Franck-Condon factors, we have predicted and experimentally verified a set of photoassociation resonances that lead to efficient creation of molecules in the v=0 vibrational level of the X^{1}Sigma^{+} electronic ground state. We also compare the observed and calculated laser intensity required to saturate the photoassociation rate. We discuss the prospects for using short-range photoassociation to create and accumulate samples of ultracold polar molecules in their rovibronic ground state.