We introduce a microwave circuit architecture for quantum signal processing combining design principles borrowed from high-Q 3D resonators in the quantum regime and from planar structures fabricated with standard lithography. The resulting 2.5D whispering-gallery mode resonators store 98% of their energy in vacuum. We have measured internal quality factors above 3 million at the single photon level and have used the device as a materials characterization platform to place an upper bound on the surface resistance of thin film aluminum of less than 250nOhms.