Kinetic description of thermalization dynamics in weakly interacting quantum systems


الملخص بالإنكليزية

After a sudden disruption, weakly interacting quantum systems first relax to a prethermalized state that can be described by perturbation theory and a generalized Gibbs ensemble. Using these properties of the prethermalized state we perturbatively derive a kinetic equation which becomes a quantum Boltzmann equation in the scaling limit of vanishing interaction. Applying this to interaction quenches in the fermionic Hubbard model we find that the momentum distribution relaxes to the thermal prediction of statistical mechanics. For not too large interaction, this two-stage scenario provides a quantitative understanding of the time evolution leading from the initial pure via a metastable prethermal to the final thermal state.

تحميل البحث